

The "beReal" project

The firewood method

19th of January 2017 in the frame of the 5th Central European Biomass Conference, Graz, Austria

M. Wöhler, S. Pelz

University of Applied Forest Sciences

bio**energy**2020+

✓ Approach

- ✓ What is real life?
- Method development
- Demonstration
- Conclusion

Approach

What is "real-life" stove operation?	WP 2 - European survey of stove users - Field monitoring
Development of the new firewood stove testing method	 WP 3 Method development based on WP 2 Constant revision during project WP 4 Web based data evaluation tool WP 5 Validation WP 8 Round robin test
Demonstration	WP 7 - Field measurement
Output	WP 6 - Label development

What is "real-life"?

Field monitoring

- Measurement of draught conditions and frequency of use in field installations
- 20 appliances (in four countries)
- ✓ ∼ 4 months duration

- Number of batches per heating cycle
- Duration of heating cycles / batches
- Draught conditions

European online survey*

- 28 questions about heating appliance, installation conditions, user behavior and fuel
- Available in seven languages
- Online for 14 consecutive weeks
- ✓ www.bereal-project.eu

- ✓ 2205 completed questionnaires
- Good regional distribution along different climate zones in Europe
- Unique overview on user behavior on European level

60%

80%

Highlights of European online survey

 \checkmark

0%

20%

40%

Method development

Quick User Guide (QUG)

- Basis for stove operation (testing and "real-life")
- Provided by stove manufacturer
- Defines relevant operation procedure
 - Number of firewood pieces (incl. mass)
 - Fuel for ignition batch incl. placement in combustion chamber
 - Mass auf ignition batch
 - Recharging procedure
 - Combustion air settings

- Firewood: 1 piece, Total mass 1.0 kg
- Placement according to Fig. 6 only parallel to the window
- Air inlet flap settings:
- Bypass foamed ceramic: closed "Z" (Fig. 7)
- Primary air supply: reduced to Min (Fig. 8)
- Secondary air: reduced to 50 % (Fig 9)

3. Finishing heating operation

Figure 5

Figure 7

Figure

Figure 9

Figure 8

Figure 8 Figure 9

Method development

Measurements

- Gaseous composition (FGC): O₂, CO₂, CO, NO_y and OGC
- Flue gas temperature (T_1) : thermocouple, \checkmark centrally located in the flue pipe
- Flue gas velocity (v) and temperature (T_2)
- Draught measurement (Δp)
- Gravimetric PM measurement (PM_{bereal})
- Measurement of ambient air temperature $(T_{ambient})$ \checkmark
- Leakage test of appliance before and after combustion tests (acc. to prEN 16510-1)

V

<u>Fuel</u>

- **Type**: Beech (preferably) or birch firewood provided by testing laboratory
- ✓ **Conditions:** Water content 15% ± 3%
- Size: As defined in the QUG
- Fire starter: Bio-based fire starter is mandatory (no paper or liquids)
- ✓ **Kindling material**: Spruce, beech or birch, max. 25% of ignition batch mass

Ignition batch:

Minimum batch mass (without kindling material) shall be \geq 80% of the nominal load mass

Nominal load batch:

Size, number of firewood pieces and total batch mass is defined in the QUG. Only pieces with equal weight is allowed (± 10%)

Partial load:

Defined as 50% mass of the nominal load. Number and size of pieces and placement in the combustion chamber are defined in the QUG

Measurement cycle

								$ \longrightarrow $	、
Batch 1 Ignition	Batch 2 Preheating Nominal load	Batch 3 Nominal load	Batch 4 Nominal load	Batch 5 Nominal load	Batch 6 Partial load	Batch 7 Partial load	Batch 8 Partial load	Cooling (until T ₁ = 50°C)	
PM 1		PM 2		PM 3		PM 4			r

- ✓ Constant controlled flue gas draught: -12 Pa ± 2 Pa
- ✓ PM measurement during batch 1,3,5 and 7 (during the whole batch duration)
- ✓ Time of recharging: $CO_2 < 4\%$ and < 25% of CO_{2max} (option: $CO_2 < 3\%$ when CO_{2max} was < 12%)

Combustion air settings:

- ✓ <u>After</u> 1st / 2nd / 5th batch: only one manual adjustment (defined by manufacturer) is permitted
- ✓ During batches (2nd to 8th): no manual adjustments are allowed
- ✓ After 8th batch: adjustment (defined by manufacturer) is permitted
- ✓ Adjustments done by a automatic control system is allowed permanently

 \checkmark

Method development

Data evaluation

- ✓ Standardized data calculation and result reported by an online evaluation tool (developed in WP 4)
- ✓ Notified laboratories upload combustion test raw data and relevant appliance information
- Evaluation tool provide a final test report
- Data evaluation mostly based on prEN16510-1
 - Results are calculated for all eight batches Registered as draft [Logout beReal Datei auswählen Keine ausgewählt ents are necessary; Format - CSV, max. Size - 5 MB; an exemplary dataset is available at "List Downloadcent Measuring Equipment OGC measurement system beReal NOx measurement system Actions c (if NOx measurement is c * NO) Testing date * Please enter your username and password Ambient air temperature (°C) Ambient air pressure (hPa) Username Diameter of measurement section (m draft Password Factor of flow conditions of flue gas in the flue gas pipe; suggested values are 0.85 for turbulent and 0.5 for laminar flow Login Residual oxygen level (%) Dry gas meter calibration facto This factor defines the deviation of the sampled gas volume by the gas meter: allowed range: 0.98-1.02: if it is out of calibrate the dry gas meter new Fuel Analysis

Objectives:

- ✓ Identification of challenges in the measurement procedure and testing method
- Method repeatability and comparison with standard type testing
- Feedback loop for method development

Method:

- ✓ 9 stoves (acc. to EN 13240) were tested at different RTD partners (SP, DTI, HFR, TFZ, BE2020)
- ✓ Broad range of appliances from 4 kW to 10 kW:
 - ✓ Firewood stoves in different price levels
 - Firewood stoves with automatic combustion air control systems

Feedback for method development:

- Adjustments in the recharging criteria
- Modifications in the test rig (temperature measurement, PM measurement)
- New method showed good repeatability

Method development: Round robin test

Objectives:

- Provide performance data and method feedback of the new method
- Asses the effect of fuel quality
- Compare the new method with standard type testing

Method:

- One 5 kW stove was used for all tests
- Fuel was provided from HFR, in addition local fuel was used
- In total seven testing labs (3 with type testing accreditation)

be Real

Results:

- ✓ The "beReal" method can be reproduced in different laboratories
- ✓ The best reproducibility for the emissions is achieved for NOx, followed by CO, PM and OGC
- Increased reproducibility for test fuel without bark

x ... mean value; s ... between-laboratory standard deviation; CV ...coefficient of variation

Demonstration

Field tests

Method:

- 13 firewood stoves in 4 countries
 - Day 1: End user normal operation
 - Day 2: End user operation according to QUG
 - ✓ Day 3: End user coached by RTD partner according to beReal

Results:

- The "beReal" method can reflect typical real life heating behavior
- No constant factor between standard type testing and beReal method is given

Conclusion

- ✓ New method was developed which considered real life stove operation
- Development was based on:
 - ✓ Investigations on user behavior in real life stove operation (survey/field monitoring)
 - ✓ Validation measurements
 - Round robin tests
- Field tests were conducted to prove new method
- ✓ The new method is strongly correlated to real life stove operation
- ✓ High quality stoves can easier be distinguished from low quality appliances

"Practical test methods for small-scale furnaces"

The "beReal" project

The firewood method

M. Wöhler

woehler@hs-rottenburg.de +49 7472 951 269

S. Pelz

University of Applied Sciences

bioenergy2020+ Technologie- und Förderzentrum

TECHNOLOGICAL

DANISH

INSTITUTE