

Results of a round robin using the Real-LIFE test protocol

10th of October 2024, Ostrava/online 3rd International Workshop Claudia Schön

Content

- Real-LIFE test protocol Procedure
- Stoves and fuel, time line
- Experimental setup
- Data evaluation/calculation
- Results on emission
 - CO, OGC, TPM emission
 - Overall round robin evaluation
- Summary and conclusion

Real-LIFE Test protocol – Procedure (1)

- 1st batch at natural draught
 - Fuel mass: nominal load (sometimes with smaller logs) + 25 % kindling wood + 1 igniter
 - Ignition from top, according to manual
 - TPM probe must be pre-heated, **ENPME** method (EN 16510-1:2023)
- 2nd batch at natural draught
 - Fuel mass: nominal load, number of logs according to manual
- 3rd to 5th batch at nominal load with -12 Pa forced draught

Real-LIFE Test protocol – Procecure (2)

- 6th and 7th batch at partial load
 - Fuel mass: 65 % of nominal load at -6 Pa forced draught
 - has to be conducted also if manufacturer does not mention partial load
- 8th batch at overload
 - Fuel mass: 150 % of nominal load at -14 Pa forced draught (number of logs was increased instead of thickness of logs!)
- Recharging criteria: (4.0 ± 0.5) vol-% CO₂ or stove signal
- 3 minutes time for filter changes between batches → crucial!

Log wood stoves

Parameter	Stove A	Stove B
Heat output [kW]	7.0 (4.9 – 9.1)	4.0 (2.0 – 6.5)
Log length [cm]	25	25
Special equipment?	None	None
Year	2017 (many tests)	2023 (new device)
Weight [kg]	200	131

- Stove A (June until December 2023)
 - Lab 1 \rightarrow Lab 2 \rightarrow Lab 3 \rightarrow Lab 4
- Stove B (July until December 2023)
 - Lab 4 \rightarrow Lab 3 \rightarrow Lab 2 \rightarrow Lab 1

Fuel for round robin

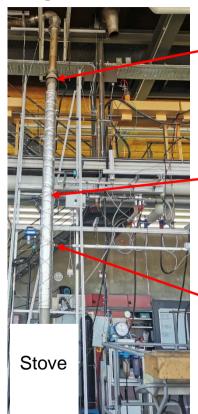
 Beech with bark was provided and prepared in correct mass for the different batches, moisture content of about 10 %

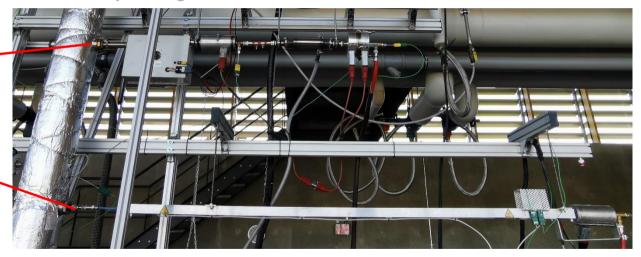
Stove A:

- ≈ 400 g logs for batch 1 (4 logs)
- ≈ 820 g logs for batch 2, 3, 4, 5 and 8 (2 or 3 logs)
- ≈ 550 g logs for batch 6 and 7 (2 logs)

Stove B:

- ≈ 275 g logs for batch 1 and 2 (4 logs)
- ≈ 550 g logs for batch 3, 4, 5 and 8 (2 or 3 logs)
- ≈ 350 g logs for batch 6 and 7 (2 logs)





Experimental setup at TFZ

Hood is open during 1st and 2nd batch (natural draught)

Extended ENPME method: ENPME + Porous Tube DR 1:8, only during 2nd, 4th, 6th and 8th batch

ENPME method – straight probe (prototype) used for every batch Only about 3 minutes time for filter changes between batches Distances according to EN 16510-1:2023, at 180 °C

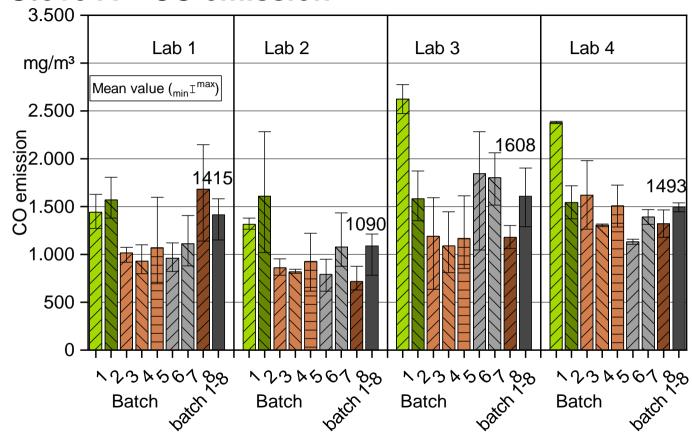
Data evaluation

- TPM emission weighted according to batch duration
- Gaseous emission:
 - Each batch evaluated to see effect of load on emission and
 - Entire cycle from ignition until reaching the recharging criteria of 8th batch → also changing times between batches considered
- Calculation (not every lab used the defined calculation procedure)
 - First mean value of CO or OGC in ppm and mean value of O₂, then reference calculation to 13 % O₂
 - Conversion of OGC (ppm, wet) was different → harmonization needed

Data considered for evaluation

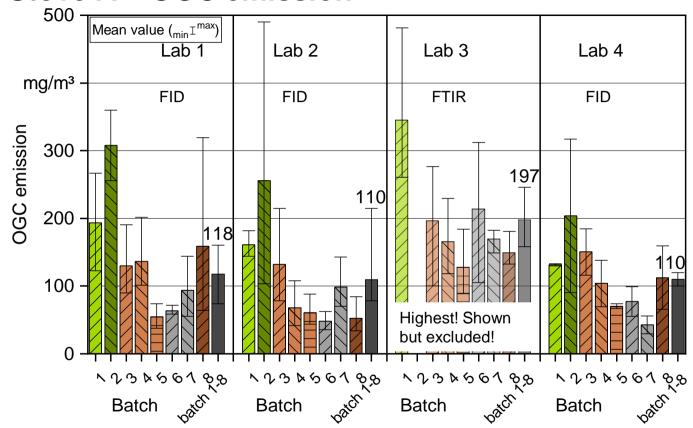
■ Lab 1: Stove A – 3 days, Stove B – 3 days \rightarrow \odot .

- Lab 2: Stove A 3 days, Stove B 2 days
 - General remark for stove B
 - On 3rd day: recharging too late at e. g. 1.7 vol% CO₂ → poor reignition → test day excluded from further evaluation
 - In general for all days: one additional batch between nominal load and partial load without further information regarding fuel mass (break needed) was performed → this batch was excluded from entire evaluation

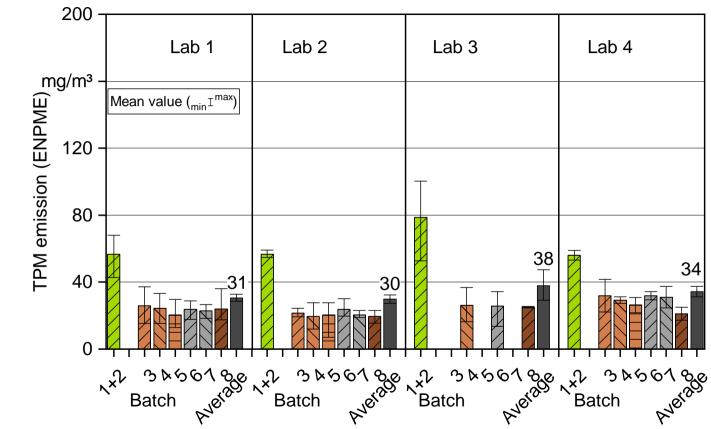

Data considered for evaluation

- Lab 3: Stove A 3 days,
 Stove B 3 days
 - no natural draught was possible during 1st and 2nd batch
 - Recalculation was necessary
 - FTIR was used for OGC determination

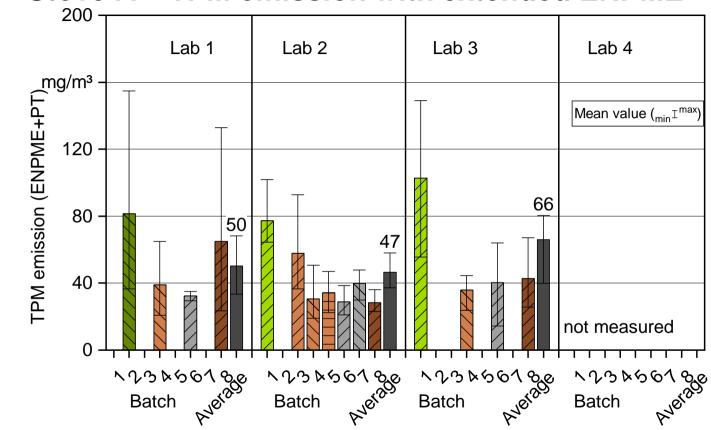
- Lab 4: Stove A 2 days, Stove B 3 days
 - stove A was tested at only natural draught conditions on 3rd testing day
 → excluded for round robin evaluation



Stove A - CO emission

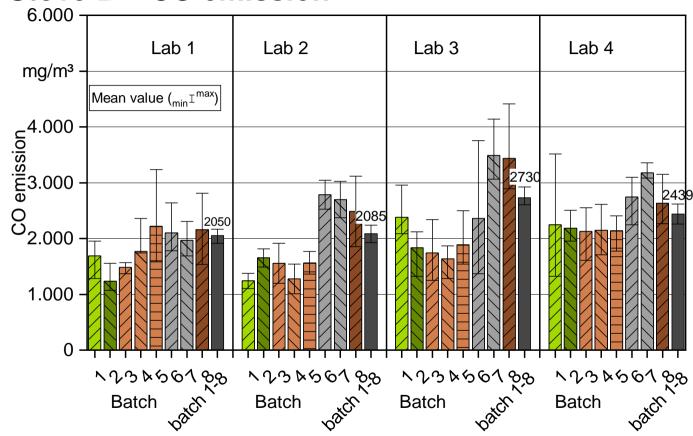


Stove A - OGC emission



Stove A – TPM emission with ENPME

Stove A – TPM emission with extended ENPME

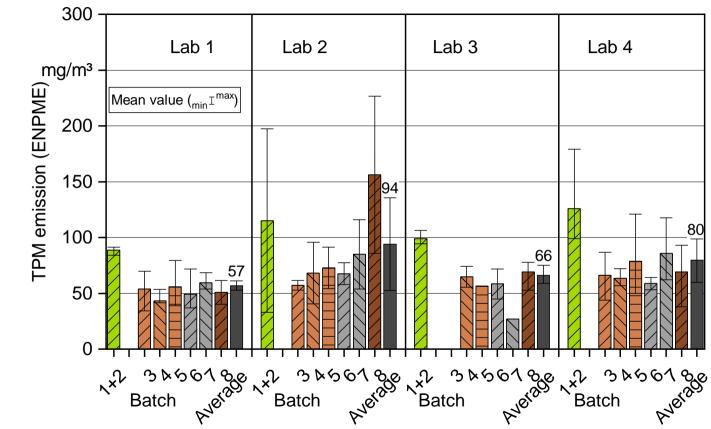


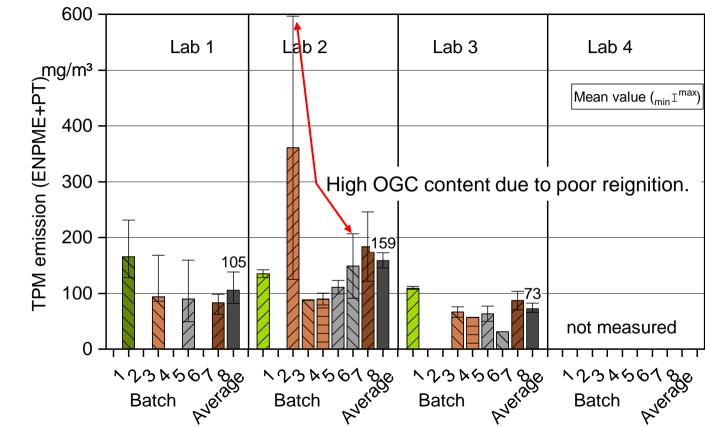
Batch 1-8: without interruption Average: batches time weighted


Stove B - CO emission

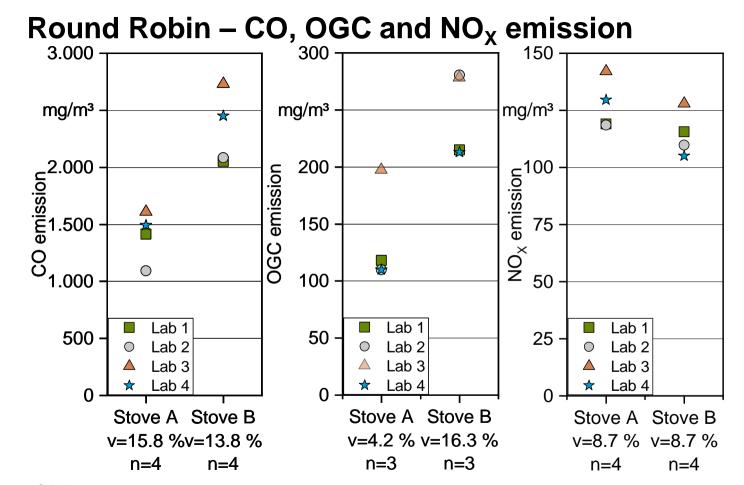
Slide 15 Schön

Stove B - OGC emission

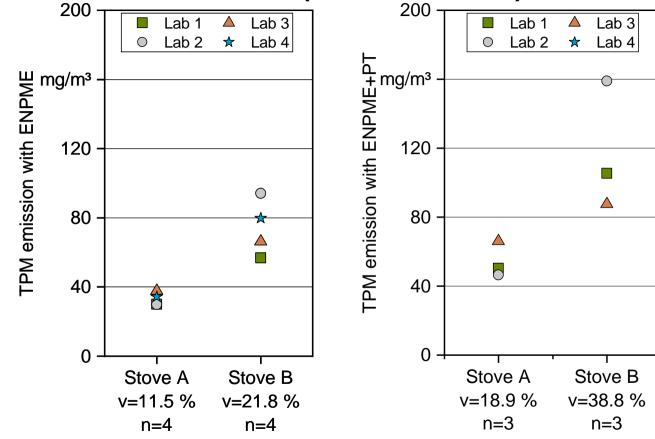

Batch 1-8: without interruption Average: batches time weighted



Stove B – TPM emission with ENPME



Stove B – TPM emission with extended ENPME



v = coefficient of variation = standard deviation / average value OGC for Lab 3 only shown but not used for calculation of variance.

Round Robin – TPM (+ Porous Tube) emission

Summary of Round Robin (1)

- Two log wood stoves were shipped around to four laboratories
- Beech with bark was provided to all in correct mass
- Real-LIFE test protocol was applied by four laboratories → protocol was mostly followed, but not always (intermediate batches, missing TPM measurement, longer breaks between batches, no natural draught)
- Measurement equipment with suitable measurement ranges required (high CO concentations e. g. during overload or poor reignition of fuel → cut-off has to be avoided, otherwise: unterestimation of emission
- Calculation procedure must be defined and uniformly applied

Summary of Round Robin (2)

- CO, OGC, NO_X and TPM emission were measured during 8 batches (ignition and different load conditions)
- OGC values determined with FID cannot be compared with values from FTIR
- All emissions showed good repeatability for the Real-LIFE test protocol ©!

Recommendation: Round Robin with stoves should be performed more often also with other laboratories!

Thank you for your attention!

Claudia Schön
Department Solid Biofuels
Technology and Support Centre
In the Centre of Excellence for Renewable Resources (TFZ)
Schulgasse 18
94315 Straubing
Tel.: +49 9421 300-152

Claudia.schoen@tfz.bayern.de www.tfz.bayern.de

Fax: +49 9421 300-211

