

Retrofit controlling units and modern draught stabilizers for stoves

Robert Mack, Dr. Hans Hartmann, Florian Volz

Project ERA-NET Bioenergy "WoodStoves 2020"

Place, Date: Stockholm, 13th Jun 2017

Table of content

- Methodology
- Combustion controllers / draught stabilizers used
- Results
 - Emissions
 - Efficiency / prevention of standing losses
 - Economic viability
- Final conclusions

Methodology

- **Testing cycle: 8 successive batches (5 full load, 3 part load) including ignition batch.**
- Each combustion controller as well as the reference measurements (without controller) has been tested for 3 complete heating cycles (5 full load 3 part load batches).
- Heating losses have been measured after each heating cycle until the flue gas temperature has been cooled down to 50°C.
- Evaluation of emissions based on volume flow and fuel consumption (converted) in mg/MJ.
- For each controller and reference measurement one cycle out of 3 successive batches has been measured (without PM) including the cool down phase.
- Air valve settings:
 - Without controller and for draught stabilizer: Bach 1-2 primary + secondary air open, batch 3-5 primary air closed, secondary air closed by 30%, batch 7-8 secondary air closed by 50%
 - With controller: Batch 1-2 primary + secondary air open, batch 3-8 primary air closed, secondary air open

Overview on the combustion controllers used

Testing conditions	Controlled dra	aught	Natural draught		
Туре	TATAREK RT8OS-G-TD	Schmid SMR	K+W Compact	ATEC Florian	K+W draught stabilizer
Function principle	Thermocouple + electronical flap	Thermocouple + electronical flap	Thermocouple + electronical flap	Thermocouple + draught and velocity sensor + electronical flap + fan	Mechanical flap
Placed at	Air supply socked	Air supply socked	Air supply socked	Between chimney wall and flue gas pipe	Between chimney wall and flue gas pipe or at chimney sole
Approx. end costumer price incl. accessories	276€	1,100€	1070 € (without Display)	300€	300€

TATAREK RT8OS-G-TD

TATAREK RT8OS-G-TD: Parameter adjustment

Combustion curve with marked control parameters

Source: http://tatarek.com.pl/files/img/eng_user_manual_rt08gos.pdf

TATAREK RT8OS-G-TD: Parameter optimization (burn-off-curves of batch 4)

Schmid SMR

Air flap is closing completely

Schmid SMR

The controller has various deposited burn-off-curves which are selected by choosing the stove type per "questionnaire"

The end user can only adjust two temperatures:

- -- Glowing-phase-temperature
- -- Cool-down-temperature

The burn-off-curve has been chosen in agreement with the manufacturer (Schmid), the glowing phase (335°C) and cool down temperature (280°C) was set after some pretests. The thermocouple showed an offset of 20°C.

K+W Compact

Holes covered with air tight tape

Free cross section: 9 cm² 8% of the pipe

K+W Compact: Parameter adjustment

Turn-switch position	Curve	Maximum temperature	Cooldown temperature	Glowing phase temperature	Heat system
0	Туре А	800 °C	220 °C	300 °C	
1	Туре А	800 °C	210 °C	290 °C	log wood
2	Туре А	800 °C	200 °C	280 °C	stove
3	Туре А	800 °C	190 °C	270 °C	
4	Туре В	800 °C	180 °C	260 °C	insert
5	Туре В	800 °C	170 °C	250 °C	
6	Туре В	800 °C	160 °C	240 °C	
7	Туре В	800 °C	150 °C	230 °C	
8	Туре С	2° 008	140 °C	220 °C	tiled stove
9	Туре С	2° 008	130 °C	210 °C	
А	Туре С	2° 008	120 °C	200 °C	
В	Туре С	00 °C	110 °C	190 °C	
С	Type D	800 °C	100 °C	180 °C	
D	Type D	2° 008	90 °C	170 °C	slow heat
E	Type D	2° 008	80 °C	160 °C	release
F	Type D	800 ℃	70 °C	150 °C	

Sorce: User Manual K+W Compact

3 complete testing cycles has been executed with the flap in delivery status1 testing cycle with the flap where the holes were covered with tape

ATEC Florian: Parameter adjustment

3 cycles have been executed on power level 1 ("intelligent" automatic mode) Where the draught is regulated automatically

The fan was only used in the first 3 min of the ignition batch.

K+W draught stabilizer

Test stand and position of measurement points

Velocity measurement at the draught stabilizer

Connection to the chimney

Comparison all controllers (Batch 1-8): Gaseous emissions

Comparison all controllers (Batch 1-8): Particle emissions

Optimally air adjustment through pretesting!

Efficiency evaluation

Comparison all controllers (Batch 1-8)

Prevention of "hot standing losses" After 3 batches during the cool-down-phase

natural draught controlled draught 15 15 Losses [%] 12.8 Fuel used % kg 11.2 11.0 10.2 Losses 0 6 Fuel used 9 8.3 7.2 6 3.9 3 3 2.0 0 0 Natural draught ATEC holes open Manual flaps in last position K+W Compact K+W automatic flap flaps in last position **Draught regulator** TATAREC Schmid SMR Natural draught

Additional to that the prevention of "cold standing losses" when the stove is not operated has to be charged. This could be **approx. 32 – 54 kWh/month** for a 8 kW stove during the heating season (see presentation on standing losses).

Amortization Schmid SMR at actually log wood prices

With a end customer price of currently approx. **1.100** \in and a annual saving of approx. **48** \in /a at **100 heating cycles/a** results in a payback period of round about **23 years**. If the flap of the TATAREK controller which costs about 276 \in will be tight, a payback period of approx. 6 years is feasible.

ERA-NET

Bioenergy

Final conclusions for retrofit controllers

- Reduction of gaseous emissions and increase of efficiency.
- No benefits for particle emissions can be claimed to the automated control units.
- Particle emissions could possibly be reduced by further technical improvement (air adjustment in the beginning of the batch, timing of refilling signal → compromise gaseous vs. particle emissions).
- Distribution and installation (parameter adjustment) of retrofit controllers should be executed only by stove manufacturer or expert staff.
- Biggest advantages of retrofit controllers:
 - Prevention of heat- and standing losses
 - Reduction of maloperation by the user (air adjustment)
- Air tight flaps are highly recommended (safety issues / admission ETA).

Many thanks for listening!

Robert Mack

- Technology- and Support Centre
- in the Centre of Excellence for Renewable Resources (TFZ)
- Schulgasse 18, D-94315 Straubing (Germany)
- Email: robert.mack@tfz.bayern.de
- Tel.: +49 9421 / 300-154
- www.tfz.bayern.de

K+W Compact: Testing results (Batch 1-8)

European Technical Assessment

Procedure for issuing a European Technical Assessment

List of **Technical Assessment Body's:** https://www.eota.eu/en-GB/content/how-

to-find-a-tab/55/

Abbreviations

- AVCP Assessment and Verification of Constancy of Performance
- EAD European Assessment Document
- EOTA European Organisation for Technical Assessment
- ETA European Technical Assessment
- hEN harmonised European standard

Source: https://www.dibt.de/en/dibt/data/ETA_brochure.pdf